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Abstract
I propose and discuss a fitness function for one-dimensional binary monomer
sequences of macromolecules for prebiotic evolution. The fitness function is
defined by the free energy of polymers in the high temperature random coil
phase. With repulsive interactions among the same kind of monomers, the
free energy in the high temperature limit becomes the energy function of the
one-dimensional long range anti-ferromagnetic spin model, which is shown to
have a dynamical phase transition and glassy states.

PACS numbers: 05.50.+q, 75.50.Lk, 36.20.−r

1. Introduction

With the development of spin-glass theory [1], properties of biological macromolecules have
been discussed in terms of spin-glass-like models, which are characterized by complex energy
landscapes. Among several suggestions, the origin of monomer sequences in a prebiotic
environment has been discussed by assuming some fitness functions which are similar to spin-
glass models [2, 3]. In these studies, monomer sequences are regarded as dynamical variables
and the evolution of macromolecules is achieved by combinations of simple molecules which
make the fitness function increase. The fitness functions are often assumed to be the energy
functions of typical spin-glass models, which contain quenched random interactions [4, 5].
By introducing spin-glass models, stability and diversity of macromolecules are naturally
explained on physical bases. Although this will be in the right direction, the relevance of
quenched randomness in this context may remain to be discussed.

Recently, the study of spin glasses has achieved another finding. Some deterministic spin
models were shown to have random glassy states at low temperature, which are referred to
as self-induced quenched randomness [6–8]. Although the study of glass transition is a long
standing problem [9], these studies clarified that some seemingly simple spin models also have
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this fascinating property. We expect the study of these and related models will be fruitful in
providing some insight into irregular structures in nature. This naturally leads to a question: are
the one-dimensional structures of macromolecules described by some deterministic models?
In other words, do polymers themselves have an ability to create stability and diversity of
biological information by non-random interactions? Quite recently, it was found that one-
dimensional anti-ferromagnetic (AF) Ising spin models belong to the spin models which have
a glass transition [10, 11]. This allows us to postulate a simple but non-trivial fitness function
for polymers in a prebiotic environment.

To find a simple fitness function for polymers, let us review some fundamental properties
of them. A polymer is a one-dimensional flexible chain made of many monomers, which may
be of several kinds. Generally, polymers are characterized by two kinds of energy scales. One
is the strong binding energy between two adjacent monomers on the chain, which is realized
by covalent bonds. The other is the weak and moderate range interactions among monomers.
Due to the strong binding energy, a polymer resembles a chain which looks like a random
coil at high temperature, while at low temperature, they fold into a compact conformation, or
conformations, which are controlled by the weak interactions.

In the process of polymer evolution, monomers on the chain are replaced by other kinds
of monomers, i.e., mutation, and/or polymers partially exchange monomer sequences, i.e.,
crossover. These processes require breaking and recombination of strong bonds. Naively, in
the prebiotic environment, we expect that breaking of strong bonds happens simply by thermal
activation, whose probability will be greater at higher temperature. Thus, in the framework of
statistical physics, a natural suggestion will be that the evolution takes place mainly at rather
high temperature, where polymers are in the random coil phase. This leads to the idea of using
the free energy of a polymer in the high temperature random coil phase as a cost function of
monomer sequences. This is in accordance with the recent idea of the ‘deep hot biosphere’
for origin of life [12].

The purpose of this paper is to explore the idea presented above by introducing a simple
polymer model. Before getting into the details of the study, we give an overview on the resulting
cost function and its implications. At high enough temperature, polymer configurations are
approximately given by random walks of a particle. With a quenched monomer sequence,
the free energy is given by the expectation value of monomer interaction energy over these
configurations. This free energy defines an energy function of one-dimensional spin model
if kinds of monomers are expressed as spin variables. In the conventional idea of statistical
physics, one-dimensional short range spin models only have a paramagnetic phase down to
zero temperature. However in our model, this is not necessarily the case since the resulting
one-dimensional models are long range due to the bending of the polymer. It is known that the
one-dimensional long range spin models can have a phase transition at finite temperature. The
resulting spin model will be long range anti-ferromagnetic when the same kinds of monomers
interact repulsively. Although this model has no quenched randomness, it has frustrations
[13], which suggest a complex energy landscape.

The plan of this paper is as follows. In section 2, introducing a simple polymer model
at high temperature, we discuss the high temperature expansion to obtain the free energy as a
function of monomer sequence. This is simply the statistical mechanics of a polymer in the
random coil phase, resulting in a seemingly simple but interesting spin model. In section 3,
taking the free energy as a cost function, we discuss the low energy states. For this purpose,
we study another statistical mechanics for spin models by regarding kinds of monomers as
dynamical variables. In section 4, we present some numerical results of double dynamics,
which consists of fast polymer dynamics and slow monomer dynamics. Section 5 is devoted
to some discussions.
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2. Binary polymer at high temperature

In this section, we introduce a simple polymer model and evaluate the high temperature
free energy, which will be regarded as a cost function for monomer sequence evolution.
Among various polymer models, we consider a heteropolymer made of binary mixtures of
two kinds of monomers. The probability of bond breaking is assumed to be very small and the
monomer sequences can be regarded as quenched on the timescale of fluctuations of polymer
configurations.

Let us consider binary polymers made of L monomers, each of which is either kind A or
B. Let Si (i = 1, 2, . . . , L) denote the kind of ith monomer; Si = 1 for A and Si = −1 for B.
We assume that the same kind of monomers interact repulsively, while the different kinds are
attractive. By this assumption, the condensation of the same kind of monomers is suppressed.
The simplest energy function made of Si will be given by

Hp =
∑
i<j

SiSjf (ri − rj ) (1)

where ri are coordinates of monomers in the space on which the polymer is placed and f (r)

is a positive function which characterizes the weak interactions between monomers. This
function will be specified later. Since monomers are located on a chain, they should obey the
constraints |ri − ri+1| = 1 for i = 1, 2, . . . , L − 1. To be specific, we assume that monomers
are located on sites of a D-dimensional simple cubic lattice, that is, each component of ri takes
integers 1, 2, . . . , K with KD = V , where V is the number of sites of the cubic lattice.

The partition function for the polymer is given by

Zp =
∑
{r}

exp(−βpHp) (2)

where βp = T −1
p is the inverse temperature of the polymer and

∑
{r} means the summation

over possible chain configurations. Usually, the chain configurations are assumed to be self-
avoiding due to the hard spheres of monomers. For the sake of simplicity, we avoid this problem
by assuming that the lattice has high enough dimension D > 4, for which self-avoiding walks
are approximated by random walks [14]. For βp = 0, we then have Zp ∼ Z0 ≡ V (2D)L−1

for large D. According to the well-known result for random walks [14], the distribution of
R = |rL − r1| is given by

P(R) =
(

D

2πL

)D/2

exp

(
− D

2L
R2

)
(3)

for large L. The one-dimensional scale of the random coil is given by (L/D)1/2.
Let us specify the interaction function f (r). We assume that the interactions are finite

range and decrease rapidly for r → ∞. The relevant parameter is the range of interactions,
beyond which f (r) ∼ 0. Note that if it is larger than (L/D)1/2, the energy function does
not depend on the chain configuration. On the other hand, long range interactions will
justify the continuous approximation for lattice structure and, more importantly, the mean-
field approximation of the resulting spin model. With these points in mind, it is convenient to
assume

f (r) = exp

(
− D

2l0
r2

)
(4)

where l0 is a positive parameter with 1 � l0 � L. Other functions will give a similar result
as long as they are finite range.
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Now we evaluate the partition function to the first order of βp. The Boltzmann weight
is expressed as a product of monomer pair contributions and the exponential is expanded in
terms of βp, giving

Zp =
∑
{r}

∏
i<j

{1 − βpfij (rij ) + · · ·} (5)

where rij = ri − rj and fij (r) = SiSjf (r). To evaluate the first-order terms, we first
sum all configurations with fixed ri and rj . In the following calculations, the continuous
approximation for a lattice is introduced, which will be justified for large l0. The number of
paths from ri to rj with length l = |i − j | is approximately given by (2D)lGl(rij ), where the
propagator is given by

Gl(r) =
(

D

2πl

)D/2

exp

(
−D

2l
r2

)
(6)

for large l and r. The expression for the number of chain configurations which starts from
r1, visits ri and rj , and ends at rL is given by the product of suitable propagators. We note
that propagators which contain either r1 or rL can be eliminated by using

∑
r1

Gi−1(r1i ) = 1,
etc. Further, the summations over lattice sites are replaced by integrals over continuous
coordinates. The first-order term then becomes

− βp

Z0

∑
i<j

∑
{r}

fij (rij ) = −βp

V

∑
i<j

∑
ri ,rj

Gj−i (rij )fij (rij )

= −βp

∑
i<j

JijSiSj (7)

where

Jij = l
D/2
0

(l0 + |i − j |)D/2
. (8)

In this way, we obtain the free energy Fp = − ln Zp/βp,

Fp =
∑
i<j

JijSiSj (9)

where an irrelevant constant is dropped. Since Jij are positive, this function defines the long
range AF spin model, if Si are regarded as dynamical variables. Note that the sign of Jij is
opposite to that conventionally used in spin models.

The cost function tells us that the interaction strengths between two monomers depend
on the distance l on the chain as (l0 + l)−D/2. This l-dependence is simply the consequence
of the probability that a particle comes back to the original point by l-step random walks. If
l0 is much larger than L, the spin model reduces to the infinite range AF model, which has a
paramagnetic phase down to zero temperature. When l0 � L, Jij become spatially decreasing
AF interactions.

Expression (9) is the simplest non-trivial cost function among several modifications.
Firstly, the second-order terms of βp give rise to four-spin long range interactions. These
terms will change the following arguments quantitatively but will not greatly change the
qualitative aspects. We can control the contribution of these terms by choosing βp. Secondly,
the relevance of nearest neighbour (nn) AF interaction remains to be discussed since nn
monomers are bound by strong interactions which do not depend on the kinds of monomers.
As discussed in section 5, the change of nn AF interactions may change the nature of the low
temperature phase and contain another interesting problem, which is beyond the scope of this
paper.
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3. The study of the effective AF spin model

In the previous section, we have studied the free energy with fixed monomer sequences,
assuming that the polymer chain is in the random coil phase. The resulting free energy defines
the cost function of monomer sequences. This function can be regarded as the energy function
of the long range AF Ising spin model if the kinds of monomers are regarded as dynamical
spin variables. In this section, we study the statistical mechanics of the effective spin model
by introducing a formal temperature for spin variables. Basically we are interested in the
behaviour of the cost function for various monomer sequences. We shall discuss the meaning
of the spin dynamics in sections 4 and 5.

As discussed in earlier papers, the long range AF spin models have very interesting
properties in spite of their simplicity. They have a dynamical phase transition and glassy low
temperature phase. The study performed here is parallel to the ones presented in the previous
papers [10, 11].

For convenience, we choose D = 4 and include the diagonal terms Jii = 1 in the energy
function, which is then given by

H = 1

2

∑
ij

Jij SiSj (10)

where

Jij = l2
0

(l0 + |i − j |)2
. (11)

To discuss the low energy states of H, it is convenient to express the energy function by Fourier
representations as

H = 1

2

∑
k

J (k)|S(k)|2 (12)

where
∑

k means a sum over k given by k = 2πµ/L(µ = −L/2 + 1, . . . , L/2), S(k) =∑
j Sj exp(ikj)/

√
L, and J (k) are Fourier representation of Jij , which are given by

J (k) = l2
0

∫ ∞

0

t (et − e−t )

et + e−t − 2 cos(k)
exp(−l0t) dt. (13)

The property of J (k) is discussed in appendix A. J (k) is a positive decreasing function
of k, taking J (0) ∼ 2l0 and J (π) ∼ 1/l0. Unlike the AF models studied previously,
J (k ∼ π) ∼ 1/l0 is not negligibly small, although it tends to zero for l0 → ∞.

Although S(k) are not independent variables due to Ising constraints |Si | = 1, expression
(12) is useful to have some insight into the low temperature properties of the model. We first
note that macroscopic condensation of S(k) is suppressed since all J (k) are positive. One
exception will be the one with the smallest J (k), that is k = π , which represents the AF
order. The energy density for this state is given by J (k = π)/2 ∼ 1/2l0, which is an absolute
minimum state.

Expression (12) also suggests an analogy with the anti-Hebbian (AH) model, which is
defined by the energy function

HAH = 1

2

∑
µ


∑

j

Sj ξ
µ

j

/√
N




2

(14)

where ξ
µ

j = ±1 (j = 1, 2, . . . , N,µ = 1, 2, . . . , P ) are quenched random variables and N
is a system size. This energy function is made of P = αN constraint terms made of random
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linear functions with constant weight. The energy functions of the long range AF model are
obtained by setting ξ

µ

j → exp(ikj) and introducing suitable weights for each constrains. We
also note that the interactions among spins are expressed by the sum of anti-Hebbian amplitude
−ξ

µ

i ξ
µ

j

/
N . By replica treatment along the line in [15] and marginally stable condition [7], it

was shown that the AH model has a dynamical phase transition and glassy low temperature
states for small α [16]. Although the long range AF models do not have quenched randomness,
they have similar properties as studied in the previous papers.

To study the paramagnetic and possible glassy phase, we construct a mean-field replica
theory, making use of the Gaussian approximation, which will be justified for large l0. This
gives a treatment similar to the one for the AH model. A brief review of the mean-field replica
theory is given in appendix B, where a definition of the saddle-point variables is also given.
Here we only present the main results.

Let us begin with the high temperature expansion. Introducing a monomer inverse
temperature β = T −1, the partition function is defined by

Z =
∑
{S}

exp(−βH {Si}). (15)

With the Gaussian approximation presented in appendix B, we obtain the high temperature
free energy f = − ln Z/βL, energy e,

f = 1

2β

∫ π

−π

ln(1 + βJ (k))
dk

2π
− 1

β
ln 2 e = 1

2

∫ π

−π

J (k)

1 + βJ (k)

dk

2π

and entropy s = β(e − f ). Roughly, s is estimated to be ln 2 − ln(1 + βJ (0))/cl0 with some
constant c. This expression becomes negative below Ts ∼ 2l0 exp(−cl0 ln 2), which is not
acceptable for Ising spins. This signals the existence of a phase transition above Ts . Study of
the AH model suggests that there will be a glass transition above Ts , which can be discussed
by replica mean-field theory.

By introducing n replicas, the replicated partition function is defined by

Zn = 1

2L

∑
{η,S}

exp


−β

n∑
ρ=1

H
{
ηiS

ρ

i

}

 (16)

where ηi = ±1.
With the approximation for the limit l−1

0 → 0, we reach the replica mean-field theory,
which is described by order parameter matrix qρσ (ρ, σ = 1, 2, . . . , n, ρ �= σ). Non-trivial
replica symmetry (RS) solutions continuously appear at the temperature given by

1 = −β22g′′(β) (17)

where

g′′(x) = −1

2

∫ π

−π

J 2(k)

(1 + xJ (k))2

dk

2π
. (18)

At this point, it will be convenient to compare this expression with the one of the AH model,
which has Nα constraint terms for N spins in the energy function. In this model, a RS
transition appears at β given by 1 = αβ2/(1 + β)2, which does not have a positive solution
for α < 1. Similarly, since J (k) > 0 for all k, equation (17) does not have a solution down to
zero temperature.

Having negative entropy and no RS solution, we study one-step RSB solutions, which
are defined by assuming qρσ = q1(ρ �= σ) in the diagonal blocks of size m × m and zero
elsewhere. There are two kinds of RSB solutions; one is the usual one and the other is the
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Figure 1. T-dependence of energies for the AF spin model with l0 = 40. The full line for all
temperatures is the result of high temperature expansion. The full line for T < Tg = 0.068 is
the replica result with the marginally stable condition. Dots with error bars represent the result
of simulated annealing for five runs with L = 200. 104 MC steps have been performed at each
temperature.

one with the marginally stable condition [6]. It was suggested that the marginally stable
RSB solution describes the glass transition, while the usual RSB solution describes the lowest
glassy state. The latter appears at a temperature very close to Ts , while the former appears at
a temperature Tg much higher than Ts . The marginal stability condition is given by

1 = −β2

∫
cosh−4(

√
λ1x) coshm(

√
λ1x)Dx∫

coshm(
√

λ1x)Dx
2g′′(β(1 − q1)) (19)

where Dx = exp(−x2/2) dx/
√

2π and λ1 is given by the saddle-point equation. In figure 1,
the temperature dependence of energies of marginally stable RSB as well as high temperature
energy are presented for l0 = 40, for which Tg = 0.068.

The simulated annealing of the AF model is performed by Monte Carlo (MC) method of
Metropolis type, where spin flips are accepted with the probability min[1, exp −β(	H)],	H

is the change of energy. The simulation results for l0 = 40 are presented in figure 1, which
shows the temperature dependence of energy. The simulation result is systematically higher
than the results of the replica method, but it shows a breakpoint close to T = Tg . We should
note that the energy obtained by the Gaussian approximation tends to zero as T → 0, while
the energy by simulation should tend to the lowest energy J (π)/2 ∼ 1/2l0 if the system has
no phase transition. Actually, the discrepancy is very close to 1/2l0. This was not visible in
the case of the AF model studied before, for which J (k) for k ∼ π is exponentially small or
zero. We suppose that l0 = 40 is not large enough to have a long range version of the present
model.

Although it is not presented in the figures, we have studied the Edward–Anderson (EA)
order parameter and the acceptance rate for the same runs. The EA order parameter is defined
by qEA = ∑

i〈Si〉2/L, where 〈Si〉 is an average of Si over the configurations generated by
the MC method. These quantities show strong fluctuations for Tg � T � 0.1 when the MC
step at each temperature is not large enough. The EA order parameter becomes 1 and the
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acceptance rate becomes 0 rapidly around Tg . These aspects are consistent with the results of
replica theory.

To see what the low energy states look like, we studied the low energy stable states up to
system size L = 30 by enumeration of all configurations. As expected, the lowest state is the
AF configuration, which seems isolated from higher energy states. The configurations above
AF states are very similar to AF states but have a few kinks such as AA and BB. Although
the system size is not large enough to have a translational invariance, the states with very low
energy seem to show this property approximately. As the energy increases, the number of
kinks increases and the number of states also increases quite rapidly.

In this section, we have studied the long range AF model defined by (10) along a line
which was presented in the previous papers. Almost all aspects are similar to those which were
found in the previously studied AF models, except for the energy values at low temperature and
strong fluctuations just above Tg . We suppose that finite J (k ∼ π) gives rise to these aspects.
Concerning the value of energy, the relation

∑
k |S(k)|2 = L, which holds for Ising spins,

gives positive H for positive J (k), while the Gaussian approximation at high temperature gives
energy tending to zero as T → 0. This makes the theoretical results lower than the simulation
results. On the strong fluctuation, finite J (k ∼ π) seems to make the annealing process near
the glass transition more complicated than the case J (k ∼ π) ∼ 0, since the distribution of
S(k) at low temperature will be strongly controlled by finite and varying J (k ∼ π). However,
qualitatively, the result of simulated annealing is consistent with the replica theory and very
similar to those of the AF models studied before, supporting the existence of a glass transition.

Are these results relevant to understanding the polymer evolution problem? We first
note that the density of cost function H/L varies from 0.5 to about 1/2l0 depending on
the monomer sequences. This means that the L-dependence of monomer interaction energy
H − 0.5L changes from L1/2 to L by the arrangements of monomer sequence. Further, the
existence of a glass transition implies that there are many monomer configurations which are
stable with respect to one-monomer change. This gives an interesting idea on the states of
monomer sequences. In spin models, we may say that the spin direction is right if it is in
the same direction as the local field, and wrong if not. We can use the same terminology
for monomer sequences. That is, a monomer in the sequence is right if the cost function
value increases by the replacement by the other kind of monomer and wrong if it decreases.
However, in the polymer problem, we need to break two bonds to replace a monomer by the
other kind. This process will not take place so easily as in the spin model. In the following
section, we discuss the meaning of the spin model and directly study the double dynamics of
polymer chain and monomer sequences to see the consistency of the results obtained in this
section.

4. Double dynamics simulation of a polymer

The result in the previous section implies that the density of monomer interaction energy Hp/L

in the random coil phase varies from 0 to about −0.5 + 1/2l0 as the monomer sequence varies.
Below the glass transition temperature, the acceptance rate of monomer change becomes
practically zero. This section is devoted to presenting some primary results of numerical
simulations of the polymer itself. We only give some results which provide a consistency
check between the effective spin model and the original polymer problem. The scale of
simulations will be too small to give any conclusion on the glass transition.

We first note that there are several types of dynamics for monomer sequence evolution.
One is to add or remove monomers at the ends or in the middle of a polymer, which changes
the length of the polymer. Second is to change the kinds of monomers without changing
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the length of the polymer, which may be called a mutation in the biological context. We
suppose that this change corresponds to a spin flip in the Ising spin models. If we assume
that the binding energy of strong monomer couplings is finite, both kinds of changes should
be included for consistency. However, this makes the problem very difficult. In this paper,
we restrict ourselves to the changes which correspond to spin dynamics. In the context of
the polymer problem, this situation will correspond to an isolated long polymer in a solution
which is full of two kinds of free monomers. However, this instance is somewhat unrealistic
since free monomers will tend to make dimers or small polymers rather than being isolated.
In this sense, the following simulation cannot be related to the evolution directly but gives
some idea of low cost states. Accordingly, the monomer temperature T, which is required to
do simulations, is a formal one and is not directly related to real temperature. Note that the
rate of monomer change will be controlled not only by binding energy and real temperature
but also by the density of free monomers.

With mutation only, double dynamics of polymer chain and monomer sequences goes
as follows. As in section 2, we consider a polymer of length L − 1 which is placed in
a four-dimensional simple cubic lattice. Initial polymer configurations are generated by a
(L − 1)-step random walk. The initial monomer sequence is given by randomly generated Si .
The energy function is then given by (1). To avoid the overlapping of monomers, we assume a
very high energy when |ri − rj | = 0. In the MC simulation of polymer dynamics, three kinds
of one-step change are allowed: end rotation, kink jump and crankshaft [17]. When monomer
coordinates are expressed as a summation of ri+1 − ri (i = 1, 2, . . . , L − 1), end rotation
is performed by rotation of r1 − r2 or rL − rL−1, a kink jump is by interchange of ri − ri−1

and ri+1 − ri , and crankshaft is by simultaneous rotation of ri+1 − ri and ri+3 − ri+2 when
ri+1 − ri = −(ri+3 − ri+2), respectively. Monomers are checked sequentially to find which
change is possible. For each change, the change of energy (1), denoted by 	Hp, is evaluated.
This change is allowed with probability min[1, exp(−βp	Hp)]. All these processes are
performed for a fixed monomer configuration. The change of monomer is assumed to take
place every Mp MC steps of polymer dynamics. For simplicity, we use the expectation value
of Hp, denoted by 〈Hp〉, over Mp MC steps for the cost function of monomer sequences
instead of free energy. This approximation will be good at high enough temperature. With a
given monomer sequence Si, 〈Hp〉 is evaluated and then after Sj → −Sj for a certain j, 〈Hp〉′
for the changed monomer sequence is evaluated. This change is allowed with probability
min[1, exp(−β(〈Hp〉′ − 〈Hp〉))]. Site j varies from 1 to L in one MC step of monomer
dynamics.

In the simulated annealing of monomer sequences, monomer temperature T decreases
step by step with fixed polymer temperature Tp. For the sampling of polymer configurations,
we are obliged to take small L. In figure 2, we present the T-dependence of 〈Hp〉/L + 0.5
by simulated annealing, where l0 = 40, L = 50,Mp = 20, and Tp = 5.0. The acceptance
rate of polymer dynamics for this Tp is more than 50% irrespective of T. The number of MC
steps of monomer dynamics is 10 for each T. The qualitative behaviour of the energy seems
consistent with that of the spin model in figure 1. The acceptance rate of monomer changes
becomes zero rapidly for T � 0.1, where 〈Hp〉/L also ceases to decrease. Although this is
consistent with the existence of a glass transition, the scale of simulation is too small to give
any conclusion on the phase transition.

The monomer dynamics presented in this section is made to correspond to spin dynamics
of the effective AF spin model, which will be achieved in the Mp → ∞ limit. We implicitly
made an assumption that T is controlled by the monomer binding energy and the density of
free monomers. If we start with finite binding energy, we are obliged to take into account
breaking and binding of polymers. In this sense, the dynamics studied in this section may
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Figure 2. Dots with error bars represent the T-dependence of 〈Hp〉/L+0.5 of double dynamics for
the polymer model for five runs. See the text for the values of parameters. Theoretical results for
the AF spin model are also depicted for reference. The dotted line shows the averaged acceptance
rate of monomer dynamics. The vertical axis is common to all data. Although the averaged
acceptance rate is not zero for T = 0.05, the original values are zero for most runs.

have limited relevance in understanding the monomer sequence evolution. However, monomer
configurations with low cost function value are those which should be achieved by any kind of
descent dynamics controlled by the cost function. The simulations for a polymer imply that,
as far as the monomer interaction energy is concerned, the polymer problem seems to be well
described by the effective spin model.

5. Discussion

In this paper, we introduced and discussed the cost function of monomer sequences by
assuming that evolution occurs in the high temperature random coil phase. This is motivated
by the naive idea that rearrangement of the strong monomer bonds will take place mainly in
the high temperature random coil phase and the resulting monomer sequences are tested in the
same environment. The cost function for monomer sequences becomes the energy function
of the long range AF spin model if the kinds of monomers are regarded as spin variables.
Like the AF spin models studied before, this model has a glass transition, which is found by
the replica method with the marginality condition. The MC simulation for the spin model is
qualitatively in agreement with the replica theory, although the energy values of simulation
are systematically higher than the results of replica theory. We suppose that this is due to
non-zero J (k) for k ∼ π . It is desirable to make a more sophisticated study of this situation.

Having the effective AF spin model, we have directly studied the monomer dynamics by
double MC dynamics, assuming a monomer change takes place every Mp MC steps of high
temperature polymer dynamics. The energy range of the polymer simulation is found to be
consistent with that of the effective spin model. Around Tg , monomer dynamics becomes
very slow, which implies a qualitative change of the dynamics. This is also consistent with
the glass transition suggested by the effective AF spin model.

Let us make some remarks on the modification of the cost function. The interaction
studied in this paper simply gives an AF order for an absolute minimum state. This may
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change by including another interaction term. Here we consider the effect of suppressing
nearest neighbour AF interactions. In the Fourier representation, the additional cost function
takes the form −a

∑
k cos(k)|S(k)|2 with a positive a. For suitable a, this term makes J (k)

non-monotonic for k close to π , implying that AF order is no longer an absolute minimum
state. When some J (k) are negative, interactions Jij can be regarded as a mixture of Hebbian
and anti-Hebbian type amplitudes. According to the replica study [15], even only Hebbian
type does not allow the condensation of a certain mode due to quenched noises created by
other modes, if the number of modes is not small enough. We think that this is the case in our
modified model. An interesting possibility is that the glass transition is replaced by the usual
spin-glass transition, which can be identified by the appearance of a non-trivial RS solution.
This also implies that a several-steps RSB solution is required to describe the low temperature
phase correctly, giving the hierarchical organization [18] of monomer sequences. However,
the situation with partly negative J (k) is not so clear since the Gaussian approximation for the
replicated partition function is not necessarily suitable for partly negative J (k).

An analogy to spin models is illuminating in describing the states of monomer sequences.
As discussed in section 3, using the terminology of spin models, we say that a monomer is
right if the corresponding spin is parallel to the local field and wrong if not. In the polymer
problem, there are two factors which encourage the replacement of wrong monomers; one is
of course that the local field by other monomers favours a right monomer and another is that
the wrong monomer itself attracts a right monomer. We thus expect that wrong monomers
on the sequences are strong attractive spots for free monomers. Below the glass transition
temperature, there are many kinds of polymers which have almost all right monomers. In
this sense, the concept of glassy states seems suitable to explain the stability and diversity of
biological polymers, as was suggested in the literature. However, we should note that glassy
states are not in equilibrium, which will make further evolution.

An analogy to spin models also reveals the limit of spin models in understanding polymer
evolution. Although mutation is a suitable operation to achieve the right monomer sequence,
evolution only by mutation sounds unrealistic if monomer binding energy is finite. Mutation
requires successive changes of two bonds and a finite density of free monomers in the solution.
This situation will make the evolution very complicated since it induces various other processes
which change the length of polymers. In addition, finite free monomer density will encourage
the formation of small polymers. Thus the density of free monomers will be very small, which
may suppress mutation greatly. For these reasons, we think that evolution which includes the
change of polymer length will mainly control the evolution in a system with finite monomer
binding energy.

With combination, crossover and breaking of polymers, we should consider not a single
polymer but an ensemble of polymers, which may be studied by methods similar to genetic
algorithms [19], although making copies is far from trivial in the polymer evolution problem.
An interesting question is whether these processes create lower cost states than the states at
glass transition or not. We expect that the processes which include the simultaneous change of
many monomers will have a chance to give lower cost states than only by mutation. Another
interesting aspect of an ensemble of polymers is that interactions among polymers may work
in a certain biased direction in polymer evolution. If there are strong attractive interactions
between polymers, the probability of combination and crossover will be larger than the case
of weak interactions. This may implies that interactions among polymers become weak as
combination and crossover proceed. Remaining interactions among polymers will be a very
interesting subject in the study of prebiotic evolution.

To summarize, I have shown that the polymer evolution problem in the high temperature
random coil phase is related to the one-dimensional long range AF spin models, which have
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low energy glassy states. An important finding may be that monomer sequences of binary
polymers have the ability to achieve stability and diversity by themselves even in the random
coil phase. Of course, this does not necessarily imply that life started in this situation.
However, our study implies that some interesting order may arise among evolving polymers
in this seemingly simple situation.

Appendix A

In this appendix, we discuss the properties of the Fourier representation of Jij , which is defined
by

J (k) =
L−1∑
l=0

l2
0

(l0 + l)2
(eikl + e−ikl) − 1. (A.1)

With the integral representation for (l0 + l)−2, we obtain

J (k) = l2
0

∫ ∞

0

t (et − e−t )

et + e−t − 2 cos(k)
exp(−l0t) dt. (A.2)

This expression implies that J (k) is a positive decreasing function of k. The values of J (k) at
k = 0 and k = π are given by

J (0) = l2
0

∫ ∞

0

t
(
et/2 + e−t/2

)
(
et/2 − e−t/2

) exp(−l0t) dt

J (π) = l2
0

∫ ∞

0

t
(
et/2 − e−t/2

)
(
et/2 + e−t/2

) exp(−l0t) dt.

For large l0, these expressions give J (0) ∼ 2l0 and J (π) ∼ 1/l0.
To have an idea of the k-dependence of J (k), we consider the limit l0 → ∞, where

contributing t is very small. Then,

J (k) ∼ l2
0

∫ ∞

0

2t2

t2 + 2(1 − cos(k))
exp(−l0t) dt

= 2l0

∫ ∞

0

s2

s2 + 2l2
0(1 − cos(k))

exp(−s) ds.

The last expression implies that the characteristic k is l−1
0 , beyond which J (k) becomes of

order l−1
0 .

Appendix B

In this appendix, we review the mean-field replica theory of the long range AF model, whose
energy function is given by

H {Si} = 1

2

∑
k

J (k)|S(k)|2 (B.1)

where S(k) are Fourier components of Si . By the argument in the previous papers, the
replicated partition function is defined by

Zn = 1

2L

∑
{η,S}

exp


−β

n∑
ρ=1

H
{
ηiS

ρ

i

}

 . (B.2)
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By introducing Gaussian variables φ
ρ

k and performing the η-sum, we obtain

Zn =
∑
{S}

∫
exp


−1

2

∑
ρ,|k|

∣∣φρ

k

∣∣2
+

∑
j

ln cos




√
β√

2L

∑
ρ,k

√
J (k)φρ

µek
jS

ρ

j





 ∏

ρ,|k|

dφ
ρ

k

2π

(B.3)

where ek
j = exp(ikj), dφ

ρ

k = d Re φ
ρ

k d Im φ
ρ

k , and
∑

|k| means a sum over k = 2πµ/L (µ =
0, 1, . . . , L/2). To integrate over φ

ρ

k , we make an approximation ln cos(x) ∼ −x2/2, i.e., a
Gaussian approximation, which will be justified for small l−1

0 . Then we have

Zn =
∑
{S}

exp(−Tr g(βq)) (B.4)

where q is a matrix defined by qρσ = ∑
i S

ρ

i Sσ
i

/
L with qρρ = 1 and

g(x) = 1

2

∫ π

−π

ln(1 + xJ (k))
dk

2π
(B.5)

Zn is evaluated by the saddle-point approximation by introducing an integral representation
for the delta-function δ

(
Lqρσ − ∑

i S
ρ

i Sσ
i

)
. At the saddle point,

Zn = exp(−βnf (λρσ , qρσ )) (B.6)

where

βnf (λρσ , qρσ ) = Tr g(βq) +
1

2

∑
ρ �=σ

λρσ qρσ − ln
∑
{S}

exp
1

2

∑
ρ �=σ

λρσ SρSσ (B.7)

where qρσ and λρσ are the solutions of the saddle-point equations. The result for the high
temperature phase is obtained by setting n = 1, which is given in section 3.

The RS solution is defined by qρσ = q, λρσ = λ for all ρ �= σ , which gives

βf = βqg′(β(1 − q)) + g(β(1 − q)) +
1

2
λ(1 − q) −

∫
ln 2 cosh(

√
λx)Dx (B.8)

yielding a saddle-point equation, q = ∫
tanh2(

√
λx) Dx, λ = −2β2qg′′(β(1 − q)). The

solution continuously appears at the temperature given by 1 = −β22g′′(β).
The one-step RSB solution with zero off-diagonal blocks is defined by setting qρσ = q1

for diagonal blocks with size m×m and zero elsewhere and the same for λρσ . With this ansatz,
matirx q has eigenvalue xm = 1 − q1 + mq1 with degeneracy n/m and eigenvalue x0 = 1 − q1

with degeneracy n − n/m. We then obtain

βf = 1

m
g(βxm) +

(
1 − 1

m

)
g(βx0) +

1

2
(m − 1)λ1q1 +

1

2
λ1 − 1

m
ln

∫
2m coshm(

√
λ1z) Dz.

(B.9)

The marginally stable solution is defined by ∂f/∂q1 = 0, ∂f/∂λ1 = 0, and the marginally
stable condition, which is obtained by studying the change of (B.7) to the second order of
small changes of order parameters. This gives (19).

References
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